
Draft: Precompiling C++ for Garbage Collection

Daniel R. Edelson

�

INRIA Project SOR

Rocquencourt, BP 105

78153 Le Chesnay Cedex

France

edelson@sor.inria.fr

26 March 1992

Abstract

Our research is concerned with compiler-independent,

e�cient and convenient, garbage collection for C

++

.

Most collectors proposed for C

++

have either been

implemented in a library, or in a compiler. As an

intermediate step between those two, this paper pro-

poses using precompilation techniques to augment a

C

++

source program with code to allow type-accurate

garbage collection. In this way, the garbage collector

can be more portable and distributable than a col-

lector within a compiler, while simultaneously more

convenient (i.e., more practical) than a type-accurate

collector that is implemented entirely within a library.

The collector that is under development is based

on precompiler-generated smart pointers as a replace-

ment for raw pointers in the C

++

program. The pre-

compiler emits the smart pointer de�nitions, and the

user is required to utilize them in place of raw point-

ers. These smart pointers supply functionality that

allows the collector to locate all of the roots in the

program. The precompiler also generates code that

allows the collector to locate internal pointers within

objects. This paper describes the architecture of the

system, whose �rst implementation as a simple mark-

and-sweep collector is underway. The paper also de-

scribes how the collector may eventually be extended

with generations.

Keywords

C

++

, garbage collection, compilers, precompilers,

smart pointers, mark-and-sweep, memory manage-

ment

�

Author's other a�liation: Computer and Information Sci-

ence, University of California, Santa Cruz, CA 95064, USA,

daniel@cse.ucsc.edu

Copyright (C) 1992 by Daniel R. Edelson, for submission to

the 1992 Intl. Workshop on Memory Management.

1 Introduction

C

++

is nearly alone among modern object-oriented

programming languages in not providing garbage col-

lection. The lack of GC decreases productivity and

increases memory management errors. This situation

persists principally because the common ways of im-

plementing GC are deemed inappropriate for C

++

. In

particular, tagged pointers are unacceptable because

of the impact they have on the e�ciency of integer

arithmetic, and because the cost is not localized.

In spite of the di�culty, an enormous amount of

work has been and continues to be done in attempting

to provide garbage collection in C

++

. The proposals

span the entire spectrum of techniques including (not

exhaustively):

� concurrent atomic garbage collection implemented

in the cfront C

++

compiler [Det90],

� library-based object-management including refer-

ence counting and mark-and-sweep [Ken91],

� library-based mostly copying generational garbage

collection from ambiguous roots [Bar89],

� library-based reference counting through smart

pointers

1

[Mae92],

� library-based mark-and-sweep garbage collection

using smart-pointers [Ede92a]

� compiler-based garbage collection using smart

pointers [Gin91],

� library-based mark-and-sweep or copying collec-

tion using macros [Fer91], and

� library-based conservative generational garbage

collection [BW88, DWH

+

80].

1

Smart pointers [Str91, Str87, Ede] are discussed later in this

paper.

1

The vast number of proposals, without the widespread

acceptance of any one, re
ects how hard the problem

is.

The goal of our research is to make type-accurate

garbage collection available to the C

++

community.

This ideal imposes strong restrictions on the collector.

Given the speed with which C

++

compiler technology

and the C

++

language de�nition are advancing, any

particular version of any compiler quickly becomes ob-

solete. In order to be carried along with the evolution

of the state-of-the-art, and to be usable by anybody

regardless of what compiler they choose, the collector

must not be implemented in the compiler.

In the past, we have proposed implementing GC

strictly in application-code. It would be something

like \GC implemented in a library." The problem with

this approach was that it required too much e�ort from

the user. They had to �rst customize/instantiate the

library (a substantial piece of work), and then follow

its rules. Overall, this was a tedious and error prone

process.

To solve our goal of compiler-independence, while

keeping the associated complexity to the user to a

minimum, we are now proposing precompiling C

++

programs to augment them for garbage collection. In

essence, the precompiler performs the necessary cus-

tomization on the C

++

program every time it gets

compiled. The user still needs to cooperate with the

collector, but the number of things to remember (and

thus the likelihood of errors) is greatly reduced.

In this paper we discuss our collector architecture

and related techniques for supplying garbage collec-

tion at the C

++

source code level. Then, we describe

the transformations that augment a C

++

program

with the necessary code for it to utilize garbage col-

lection. The remainder of the paper is organized as

follows: Section 2 discusses related work in garbage

collection and memory management for C

++

. Section

3 provides an overview of the major techniques that

we utilize to implement garbage collection. Section 4

describes the transformations that the proposed pre-

compiler carrys-out to augmented a program for GC.

Finally, section 5 concludes the paper.

2 Related Work

There is a signi�cant body of related work, in the gen-

eral �eld of GC, in C

++

software tools, and speci�-

cally in collectors for C

++

.

2.1 Conservative GC

Conservative garbage collection is a technique in which

the collector does not have access to type information

so it assumes that anything that might be a pointer

actually is a pointer [BDS91, BW88]. For example,

upon examining a quantity that the program inter-

prets as an integer (in a register, perhaps), but whose

value is such that it also could be a pointer, the col-

lector would assume the value to be a pointer. This

is a useful technique for accomplishing garbage collec-

tion in programming languages that don't use tagged

pointers, and in the absence of compiler support.

Boehm, Demers, et al. describe conservative, gener-

ational, parallel mark-and-sweep garbage collection

[BDS91, BW88, DWH

+

80] for languages such as

C. Russo has adapted these techniques for use in

an object-oriented operating system written in C

++

[Rus91a, Rus91b]. Since they are fully conservative,

during a collection these collectors must examine ev-

ery word of the stack, of global data, and of every

marked object. In addition, Boehm discusses compiler

changes to preclude optimizations that would cause a

conservative garbage collector to reclaim data that is

actually accessible [Boe91].

Conservative collectors sometimes retain more gar-

bage than type-accurate collectors because conserva-

tive collectors interpret non-pointer data as point-

ers. Often, the amount of retained garbage is small,

and conservative collection succeeds quite well. Other

times, conservative techniques are not satisfactory.

For example, Wentworth has found that conservative

garbage collection performs poorly in densely popu-

lated address spaces [Wen90, Wen88]. Russo, in us-

ing a conservative collector to reclaim dynamic storage

used by an object-oriented operating system, has also

found that inconveniently large amounts of garbage

escape collection [Rus91a]. Lastly, we have tested con-

servative garbage collection with a CAD software tool

called ITEM [Kar89, Ede92b, Ede92a]. This appli-

cation creates large data structures that are strongly

connected when they become garbage. A single false

pointer into the data structure keeps the entire mass

of data from being reclaimed. Thus, our brief e�orts

with conservative collection in this application proved

unsuccessful.

As these examples illustrate, conservative collection

is a very useful technique, but it is not a panacea.

Since it has its bad cases, it is worthwhile to investi-

gate type-accurate garbage collection.

2.2 Partially Conservative

Bartlett has written the Mostly Copying Collector, a

generational garbage collector for Scheme and C

++

that uses both conservative and copying techniques

[Bar89, Bar88]. This collector divides the heap into

logical pages, each of which has a space-identi�er.

During a collection an object can be promoted from

from-space to to-space in one of two ways: it can be

physically copied to a to-space page, or the space-

identi�er of its present page can be advanced.

2

Bartlett's collector conservatively scans the stack

and global data seeking pointers. Any word the col-

lector interprets as a pointer (a root) may in fact be

either a pointer or some other quantity. Objects ref-

erenced by such roots must not be moved because,

as the roots are not de�nitely known to be point-

ers, the roots can not be modi�ed. Such objects

are promoted by having the space identi�ers of their

pages advanced. Then, the root-referenced objects are

(type-accurately) scanned with the help of information

provided by the application programmer; the objects

they reference are compactly copied to the new space.

This collector works with non-polymorphic C

++

data

structures, and requires that the programmer make a

few declarations to enable the collector to locate the

internal pointers within collected objects.

Detlefs generalizes Bartlett's collector in two ways

[Det90]. Bartlett's collector contains two restrictions:

1. Internal pointers must be located at the beginning

of objects, and

2. heap-allocated objects may not contain \unsure"

pointers.

2

Detlefs' relaxes these by maintaining type-speci�c map

information in a header in front of every object. Dur-

ing a collection the collector interprets the map infor-

mation to locate internal pointers. The header can

represent information about both sure pointers and

unsure pointers. The collector treats sure pointers ac-

curately and unsure pointers conservatively. Detlefs'

collector is concurrent and is implemented in the

cfront C

++

compiler.

2.3 Type-Accurate Techniques

Kennedy describes a C

++

type hierarchy called OATH

that uses garbage collection [Ken91]. Its collector al-

gorithm uses a combination of reference counting and

mark-and-sweep. In OATH, objects are accessed ex-

clusively through references called accessors. An ac-

cessor implements reference counting on its referent.

Thus, the �rst reclamation algorithm available for

OATH objects is reference counting. In addition, the

reference counts are used to implement a three-phase

mark-and-sweep algorithm that can collect cyclic data

structures. The three-phase algorithm proceeds as fol-

lows. First, OATH scans the objects to eliminate from

the reference counts all references between objects.

After that, all objects with non-zero reference counts

are root-referenced. The root-referenced objects serve

as the roots for a standard mark-and-sweep collection,

during which the reference counts are restored.

2

An unsure pointer is a quantity that is statically typed to

be either a pointer or a non-pointer. For example, in \union f

int i; node � p; gx;" x is an unsure pointer.

In OATH, a method is invoked on an object by in-

voking an identically-named method on an accessor to

the object. The accessor's method forwards the call

through a private pointer to the object. This requires

that an accessor implement all the same methods as

the object that it references. Kennedy implements

this using preprocessor macros so that the methods

only need to be de�ned once. The macros cause both

the OATH objects, and their accessors, to be de�ned

with the given list of methods. While not overly ver-

bose, the programming style that this utilizes is quite

di�erent from the standard C

++

style. Additionally,

current compiler technology renders long macros, such

as those required for OATH, quite di�cult to debug.

A precompiler would have substantial bene�ts over a

preprocessor for a system like OATH.

Goldberg describes tag-free garbage collection for

polymorphic statically-typed languages using compile-

time information [Gol91], building on work by Appel

[App89]. Goldberg's compiler emits functions that

know how to locate the pointers in all possible (nec-

essary) activation records of the program. For exam-

ple, if some function F contains two pointers as local

variables, then another function would be emitted to

mark from those pointers during a collection. The

emitted function would be called once for every ac-

tive invocation of F , on the stack, upon a collection,

to trace or copy the sub-datastructure reachable from

each pointer. Upon a collection, the collector follows

the chain of return addresses up the run-time stack.

As each stack frame is visited, the correct garbage col-

lection function is invoked. A function may have more

than one garbage collection routine because di�erent

variables are live at di�erent points in the function.

Clearly, this collector is very tightly coupled to the

compiler.

Yasugi and Yonezawa discuss user-level garbage col-

lection for the concurrent object-oriented program-

ming language ABCL/1 [YY91]. Their program-

ming language is based on active objects, thus, the

garbage collection requirements for this language are

basically the same as for garbage collection of Ac-

tors [Dic, KWN90]. Their position paper describes

a process very similar to the one proposed in this

paper, namely, translating a source program into

another source program that is augmented for GC.

The programming paradigms for C

++

and ABCL/1

[ANS91, Yon90] are quite di�erent; each introduces its

own problems that the collector needs to solve.

Ferreira discusses a C

++

library that provides

garbage collection for C

++

programs [Fer91]. The li-

brary supplies both incremental mark-and-sweep and

generational copy collection, and supports pointers

to the interiors of objects. The programmer renders

the program suitable for garbage collection be plac-

ing macro de�nitions at various places in the program.

3

For example, every constructor must invoke a macro to

register the object, and every destructor must invoke

the complementary a macro to un-register the object.

Another macro must be invoked in the class de�ni-

tion to add GC members to the class, based on the

number of base classes of the class. To implement the

remembered set for generations (cf 4.3), the collector

requires a macro invocation on every assignment to an

internal pointer. Similarly to the collector we describe

in [Ede92a], this collector requires that the program-

mer supply a function to locate internal pointers. Fer-

reira's collector can also scan objects conservatively

in order to obviate the need for programmer-coding of

this function.

Maeder describes a C

++

library for symbolic com-

putation systems based on smart pointers and refer-

ence counting [Mae92]. The library contains class hi-

erarchies for expressions, strings, symbols, and other

objects that are called normal. To improve the ef-

�ciency of assignment of reference counted pointers,

Maeder uses the address of a discrete object as a re-

placement for the NULL pointer. The smart pointers

support debugging by allowing the programmer to de-

tect dangling references: rather than being deleted,

an object is marked deleted, and subsequent accesses

to the object cause an error to be reported. Other

functionality allows the programmer to detect mem-

ory leaks, by reporting objects that are still alive when

the program terminates.

3 Overview

The two hard problems that a garbage collector must

solve are: 1) �nding all the pointers that reference dy-

namically allocated objects, and 2), locating pointers

within objects. Pointers of the �rst kind are called

roots; pointers of the second kind are called internal

pointers.

Our collector locates the roots by requiring that

they be indirected through the root table. The inter-

nal pointers are located using structure tags that are

associated with all dynamically allocated objects, and

that index information about the type of the object to

determine the o�sets of their internal pointers. Some

pointers are not handled in either of these two ways;

they will be discussed later.

3.1 Indirect Root Tables

This collector is based on root indirection. Every root

that the application manipulates is indirect through

the root table. The root table consists of one or more

arrays of cells. A cell that is in use, and therefore that

contains a direct pointer, is called active; a cell that

is free is called inactive. The inactive cells are linked

into a free list. Whenever a cell is required, one is

Root Table

System
Stack

Reserved

Link in list of free cells

A direct pointer

Application pointer (indirect)

Head of the free cell list

H

H

Dynamic Objects

Figure 1: Root indirection

The mutator's roots are indirect through the

root table. The root table contains active cells

and free cells. The free cells are linked into a free

list.

taken from this list. When no free cell is available,

a new cell array is allocated. The root table initially

consists of a single cell array; but more may be added

over a program's lifetime. Figure 1 illustrates a table

consisting of a single cell array. In �gure 2 the root

table has been extended with another array.

When allocating a new cell, it is necessary to be sure

that one is available. Normally, this would require a

test and a conditional branch. Upon obtaining the

pointer to the next free cell, the root table manage-

ment code would check to be sure that the pointer is

not NULL. However, the �rst thing that is ever done

with the new cell is to read it's value to obtain the

next link in the free list of cells. We can use that

read operation to eliminate the test and conditional

branch.

There is always one cell array that was the last to

be allocated. This array is special in that its inactive

cells are sequentially linked into a free list. This must

be true, because when the array is allocated, all of its

cells are free, and they are all linked into a free list. We

read protect the last page of this array [AL91]. During

program execution, when we attempt to load the link

stored in the �rst cell on the read protected page, the

program receives and handles a signal. That signal

4

Stack Dynamic Objects

System

A direct or indirect pointer to an object

A link in the list of cell arrays

A link in the list of free cells

Figure 2: The list of root tables

The root table consists of cell arrays that are

linked into a list. The �rst word of each array

contains its link.

tells the system to allocate and link in a new cell array.

A new diagram of a cell array is presented in �gure 3.

The shaded area illustrates the read-protected region.

3.2 Smart Pointers

We have indicated that pointers manipulated by the

programmer must be indirect through the root table,

but we have not indicated how this is accomplished.

We require that the programmer use smart pointers

[Str91, Str87, Ede] in place of pointers. Smart pointers

are user-de�ned C

++

class objects that behave like

pointers. The smart pointers use operator overloading

so that the standard indirection operators, � and -

>, can be used to transparently access objects and

members through the smart pointers.

There is a discussion of the best way to organize

smart pointers for a polymorphic C

++

class hierar-

chy in [Ede]. The basic goal is to support both poly-

morphism, and smart pointers to const objects. To

accomplish this, we use two smart pointer classes for

every user class. One of the smart pointer classes sub-

stitutes for pointers to mutable objects; the other re-

places pointers to const objects. These two classes

are related in that one is a derived class of the other.

Speci�cally, the smart pointer class for mutable ob-

jects derives from the smart pointer class for const

Root Table

System
Stack

X

X

The read-protected memory region

The specific cell that causes a trap

Dynamic Objects

Figure 3: A cell array's protected page

The most recently allocated cell array has its

last page read protected. When the protection

violation occurs, a new array is allocated and

linked to the others.

objects. This supplies an implicit type conversion, in

the desired direction, between the two classes.

A similar technique could be used to support im-

plicit pointer type conversions for pointers to base

class objects and pointers to derived class objects

[Ken91]. However, this fails in the presense of multiple

inheritance and permits an erroneous type conversion

[Ede]. Therefore, we support smart pointers in a class

hierarchy through user-de�ned type conversions. Fig-

ure 4 shows a hierarchy of user-classes, along with the

corresponding smart-pointer organization.

The next question is how to insert the smart pointer

class de�nitions into the program. C

++

contains

a mechanism for implementing parameterized types,

called templates, that seems like the perfect technique.

However, generation from templates does not give the

smart pointer classes the implicit type conversions

that they must have to behave like normal pointers.

Thus, templates alone are not su�cient. One way to

de�ne them would be through hand coding, abbre-

viated with preprocessor macros. Grossman [Gro92],

for example, uses smart pointers similar to ours for

transparent access to objects on disk or across a net-

work. In his system, the smart pointers are de�ned

5

through hand-coding, but inheritance is used to elim-

inate some redundant code. We, too, suggested hand

coding with macros in [EP91]. However, this is incon-

venient and error-prone. This paper proposes that a

C

++

precompiler generate the smart pointer classes.

3.2.1 Using Smart Pointers

As in [Ede92a], this collector requires that the pro-

grammer utilize smart pointer objects in place of raw

pointers. A precompiler could detect the declaration

and use of raw pointers and substitute smart pointers,

but we are initially trying to achieve somewhat more

modest goals. Thus, we continue to require that the

programmer manipulate objects of type \R T" rather

than raw pointers of type T�.

3.3 Internal Pointers

The collector described in [Ede92a] requires users to

supply a hand-coded mark() function for each type of

collected object. This function locates the internal

pointers for the collector. The mark functions are se-

lected through static function overloading.

3

This is

possible because the collector uses multiple root ta-

bles, in particular, the collector used one root table

per static type of smart pointer.

The advantage of this scheme is that absolutely no

dynamic type information is required by the collector

for non-polymorphic data structures. In particular,

there are no structure tags. The main disadvantages

of this approach are twofold. Firstly, hand coding is

error prone. If a user changes a class de�nition, they

may also need to change the mark() function; failure

to do so can lead to obscure gc errors. Secondly, the

use of many root tables leads to fragmentation. This

wastes memory and decreases e�ciency.

In order not to fragment memory among many root

tables, this implementation uses only a one root table.

Some dynamic mechanism is thus required for iden-

tifying internal pointers: dynamic objects are given

structure tags. Standard C

++

features are used to

assign an unique integer to every garbage collected

class. When an object is allocated, its tag is passed in

to the memory allocator through the overloaded new

operator. The tag is stored in the allocator header

associated with the object.

Separately, the precompiler locates the o�sets of the

internal pointers in every collected class, and creates a

vector of those o�sets. Any unsure pointer [Det90] is

treated conservatively, as in Detlefs' collector. Then,

the vector of o�sets is registered in the memory alloca-

tor with the type's tag. This combination of structure

tags and internal pointer o�sets allows the collector to

traverse the data structure.

3

Combined with virtual functions when necessary.

3.4 Garbage Collection

The collector is currently a stop-the-world mark-and-

sweep collector. Collection can be triggered by any

one of a number of events. The user can trigger a

collection if it is known that a lot of garbage has been

produced. Alternatively, the memory allocator can

initiate garbage collection because an allocation limit

has been reached.

In order to collect garbage, the collector examines

every cell in the root table. A cell that is free con-

tains a free-list pointer to another cell. Thus, any cell

that points into some cell array of the root table does

not contain a direct pointer. By contrast, cells that

do not point into the root table contain direct point-

ers. The mark algorithm is invoked on those cells to

set the mark bits associated with the reachable data

structure.

The traversal algorithm for marking uses explicit

stacking and iteration. Every time an object is vis-

ited, its mark bit is tested and set. If the object

was previously unmarked, the structure tag in the ob-

ject's allocation header is used to obtain information

about internal pointers. Then, the internal pointers

are pushed onto the stack and the algorithm contin-

ues with the next pointer in the stack.

4 Precompilation

The precompiler preprocesses a �le, parses it, and then

performs the following transformations:

� For every class, the precompiler emits smart

pointer de�nitions to replace raw pointers for re-

ferring to objects of that class. The smart pointer

de�nitions are prepended to the �le.

� Code is inserted to generate a structure tag for ev-

ery class. The new operator is overloaded for the

class so that, every time an object is allocated,

the structure tag for the object's type is passed

into the allocator where the tag is stored in the al-

location header. The class must use this operator

new; the user cannot supply another one.

� For every class, the internal pointer o�set infor-

mation is generated. Speci�cally, the o�sets of

internal pointers are compiled into a vector and

associated with the type's structure tag. Thus,

given an object and the corresponding structure

tag, the collector can identify the pointer mem-

bers of the object. These pointer members in-

clude not just normalmembers, but also members

of nested types.

In a future step, the programmer could actually pro-

gram with raw pointers. The precompiler would re-

code the application to use smart pointers instead of

6

A

B

C

Pa

Ra

Rb

Pb
Rc

Pc

User classes

Smart pointer classes for A*, B*, and C*

Public virtual derivation

Smart pointer classes for const A*, etc.

A, B, C:

Pa, Pb, Pc:

Ra, Rb, Rc:

User-defined type conversion

Figure 4: The smart pointer organization for the indicated user classes.

raw pointers. But this is not yet under consideration

as the rami�cations of this proposal are quite substan-

tial.

4.1 Unsure Pointers

An unsure pointer is a datum that might be a pointer

or might not [Det90]. For example, in conservative col-

lection, every properly aligned word of program data

is an unsure pointer because the collector does not

have access to type information, and thus cannot know

what actually is a pointer. This collector uses much

more type information than a conservative collector,

but can not

4

totally eliminate unsure pointers. To

deal with them, and also to be e�cient, this collector

uses conservative techniques in two ways.

One place where this collector is conservative is on

pointers that are unsure at the C

++

source code level.

For example, if an object contains a member that is

a union of a pointer and a non-pointer, the precom-

piler would treat that member as a pointer. The sec-

ond place where the collector is conservative is on this

pointers.

4.2 this pointers

In C++, whenever a method (member function) is

invoked on an object, a pointer to the object is passed

to the method on the stack. This pointer is called the

4

and should not, e.g., unions

this pointer. Through the this pointer the method can

access the object's instance data.

These pointers are potentially roots. However, this

pointers are very common and we don't want to neg-

atively impact their e�ciency. Furthermore, they are

managed by the compiler, from which this collector is

independent. Thus, we do not impose any special be-

havior, semantics, or indirection on this pointers. The

solution we propose is to coarsely decode the stack,

treating every word that might be a this pointer con-

servatively.

In every activation record on the call stack, if the

call is to a member function, then the �rst function

parameter is a this pointer. That parameter is always

in a known place in a register or in memory. We can

decode the stack just su�ciently to examine the �rst

parameter to every function. This parameter will be

treated conservatively on the assumption that it may

be a this pointer.

4.3 Generations

In generational garbage collection, the objects are seg-

regated into transient objects and non-transient ob-

jects, where the transient objects are expected to be-

come garbage quickly [Ung86, UJ88, Moo84, LH83,

DWH

+

80, Wil90]. The collector concentrates its ef-

fort on the transient objects, and does not spend time

collecting stable objects that have probably not be-

come garbage. The following observation is exploited

to determine which objects are transient and which are

7

not: young objects tend to die young, and old objects

tend to persist [Ung86]. Thus, generational collectors

concentrate their e�ort on the young objects and col-

lect older objects much less frequently.

The di�cult problem in implementing the remem-

bered set. The remembered set is those references

from old objects to young objects, called back-pointers.

This set is needed in order to collect the young objects,

since, when collecting the young objects, the roots are

all of the normal pointers (on the stack, in global data,

and in registers), and also the pointers contained in old

objects that reference young objects. Maintaining the

remembered set is that main source of overhead for

generational collectors.

Demers et al. [DWH

+

80] implement the remem-

bered set in a conservative collector as follows. The

remembered set is those pages of old space that are

thought to contain pointers to the young space. The

remembered set is initially empty, and all the pages

of the old-space are write-protected using the operat-

ing system interface to the virtual memory hardware.

Then, every time the mutator writes to a protected

old-space page, the program receives an exception that

is handled by the collector. The collector unprotects,

and adds to the remembered set, the page on which

the fault occurs. After this, the mutator can write

to the page freely. This allows the collector to iden-

tify a superset of the pages that contain back-pointers.

During a collection, the collector conservatively scans

all of the pages that are in the remembered set. Any

page that does not contain at least one pointer to a

young object is deleted from the remembered set and

re-write-protected.

This technique can be used in our collector. It is

our intention to implement it as soon as work on the

precompiler and basic memory allocator is su�ciently

advanced.

4.4 Status

The design and development of this system are both

underway. The smart pointers work, as does most of

the code to perform a garbage collection. The pre-

compiler has been prototyped using an existing C

++

compiler as the starting point. The modi�ed C++

compiler parses the user's C

++

code and emits smart

pointers and other declarations. The precompiler does

not yet reintegrate the emitted code back into the

original source program. The simple non-generational

mark-and-sweep collection algorithm, using explicit

stacking, has been implemented. The memory allo-

cator and the conservative scan for this pointers are

being implemented.

5 Conclusions

C

++

is a very well designed language considering

its goals, however, the complexity of its semantics

is daunting. Adding to that complexity by requir-

ing manual storage reclamation makes programming

in C

++

di�cult and error-prone. A widely available

garbage collector would be of great bene�t to the com-

munity.

Many garbage collectors have been proposed for

C++ but none has yet gained widespread acceptance.

Some are tightly coupled to the compiler; such collec-

tors must be supported by a major C

++

compiler ven-

dor, otherwise the compiler that implements the col-

lector will quickly become obsolete. Other collectors

are loosly coupled to the compiler. These collectors

sometimes require considerable e�ort and/or impose

restrictions for programmers. As an intermediate step

between these two extremes, this paper proposes pre-

compiling C

++

programs for garbage collection. For

type-accurate garbage collection, this is more conve-

nient for the programmer than a pure library-based

approach. Simultaneously, this is very portable and

does not require that customers utilize any speci�c

compiler.

The collector that we describe is under implementa-

tion as an (initially) non-generational mark-and-sweep

collector. After it is running, we will immediately add

generations, and eventually, concurrency. This has the

possibility of providing e�cient convenient garbage

collection to a large part of the C

++

programming

community.

Acknowledgements

I would like to thank Peter Dickman for his helpful

comments after reading a draft of this paper. I would

also like to thank Marc Shapiro for supporting this

research.

References

[AL91] Andrew W. Appel and Kai Li. Virtual

memory primitives for user programs. In

ASPLOS, International Conf. on Archi-

tectural Support for Programming Lan-

guages and Operating Systems, pages 96{

107, Santa Clara, CA (USA), April 1991.

[ANS91] ANSI X3J16/ISO WG21 working docu-

ment, May 1991. Draft ANSI/ISO stan-

dard for the C++ programming language.

[App89] Andrew W. Appel. Runtime tags aren't

necessary. In Lisp and Symbolic Compu-

tation, volume 2, pages 153{162, 1989.

8

[Ass91] Association for Computing Machinery.

Proceedings of PLDI '91, June 1991. Pub-

lished as SIGPLAN v26#6.

[Bar88] Joel F. Bartlett. Compacting garbage col-

lection with ambiguous roots. Technical

Report 88/2, Digital Equipment Corpora-

tion, Western Research Laboratory, Palo

Alto, California, February 1988.

[Bar89] Joel F. Bartlett. Mostly copying garbage

collection picks up generations and C++.

Technical Report TN{12, DEC WRL, Oc-

tober 1989.

[BDS91] Hans-J. Boehm, Alan J. Demers, and

Scott Shenker. Mostly parallel garbage

collection. In Proceedings of PLDI '91

[Ass91], pages 157{164. Published as SIG-

PLAN v26#6.

[Boe91] Hans-J. Boehm. Simple gc-safe compila-

tion, 1991. Workshop on garbage collec-

tion in OOPLs at OOPSLA '91.

[BW88] Hans-Juergen Boehm and Mark Weiser.

Garbage collection in an uncooperative

environment. Software|Practice and Ex-

perience, 18(9):807{820, September 1988.

[Det90] David Detlefs. Concurrent garbage collec-

tion for C++. Technical Report CMU-

CS-90-119, Carnegie Mellon, 1990.

[Dic] Peter Dickman. Trading space for time in

the garbage collection of actors. Submitted

to OOPSLA '92.

[DWH

+

80] Alan Demers, Mark Weiser, Barry Hayes,

Hans Boehm, Daniel Bobrow, and Scott

Shenker. Combining generational and

conservative garbage collection: Frame-

work and implementations. In Proceedings

of POPL '90, pages 261{269. Association

for Computing Machinery, January 1980.

[Ede] Daniel R. Edelson. Smart pointers:

They're smart but they're not pointers.

Submitted to the 1992 Usenix C++ Con-

ference.

[Ede92a] Daniel R. Edelson. A mark-and-sweep col-

lector for C++. In Proceedings of POPL

'92, pages 51{58. Association for Comput-

ing Machinery, January 1992.

[Ede92b] Daniel R. Edelson. Comparing two

garbage collectors for C++, in unpub-

lished form, 1992.

[EP91] Daniel R. Edelson and Ira Pohl. A copying

collector for C++. In Usenix C++ Con-

ference Proceedings [Use91], pages 85{102.

[Fer91] Paulo Ferreira. Garbage collection in

c++, July 1991. Position paper for the

OOPSLA '91 Workshop on Garbage Col-

lection.

[Gin91] Andrew Ginter. Cooperative garbage col-

lectors using smart pointers in the c++

programming language. Master's thesis,

Dept. of Computer Science, University

of Calgary, December 1991. Tech. Rpt.

91/451/45.

[Gol91] Benjamin Goldberg. Tag-free garbage col-

lection for strongly typed programming

languages. In Proceedings of PLDI '91

[Ass91], pages 165{176. Published as SIG-

PLAN v26#6.

[Gro92] Ed Grossman. Using smart pointers for

transparent access to objects on disk or

across a network, 1992. private communi-

cation.

[Kar89] Kevin Karplus. Using if-then-else DAGs

for multi-level logic minimization. In

Charles L. Seitz, editor, Advanced Re-

search in VLSI: Proceedings of the Decen-

nial Caltech Conference on VLSI, pages

101{118, Pasadena, CA, 20-22 March

1989.

[Ken91] Brian Kennedy. The features of the

object-oriented abstract type hierarchy

(OATH). In Usenix C++ Conference Pro-

ceedings [Use91], pages 41{50.

[KWN90] Dennis Kafura, Doug Washabaugh, and

Je� Nelson. Garbage collection of ac-

tors. In OOPSLA/ECOOP '90 Confer-

ence Proceedings, pages 126{134, October

1990. Published as SIGPLAN v25#10.

[LH83] Henry Lieberman and Carl Hewitt. A

real-time garbage collector based on the

lifetimes of objects. Communications of

the ACM, 26(6):419{429, June 1983.

[Mae92] Roman E. Maeder. A provably correct ref-

erence count scheme for a symbolic com-

putation system, 1992. in unpublished

form.

[Moo84] David Moon. Garbage collection in a large

LISP system. In SIGPLAN Symposium on

Lisp and Functional Programming, pages

235{246. Association for Computing Ma-

chinery, 1984.

9

[Rus91a] Vincent Russo, 1991. Using the parallel

Boehm/Weiser/Demers collector in an op-

erating system: private communication.

[Rus91b] Vincent Russo. Garbage collecting an

object-oriented operating system kernel,

1991. Position paper at the OOPSLA '92

Workshop on GC in Object-Oriented Sys-

tems.

[Str87] Bjarne Stroustrup. The evolution of C++

1985 to 1987. In Usenix C++ Workshop

Proceedings, pages 1{22. Usenix Associa-

tion, November 1987.

[Str91] Bjarne Stroustrup. The C++ Program-

ming Language. Addison-Wesley, 2

nd

edi-

tion, 1991.

[UJ88] David Ungar and Frank Jackson. Tenur-

ing policies for generation-based storage

reclamation. In OOPSLA '88 Conference

Proceedings, pages 1{17, September 1988.

Published as SIGPLAN v23#11.

[Ung86] David Ungar. The Design and Evaluation

of a High Performance Smalltalk System.

The MIT Press, Cambridge, MA, 1986.

[Use91] Usenix Association. Usenix C++ Confer-

ence Proceedings, April 1991.

[Wen88] E. P. Wentworth. An environment for in-

vestigating functional languages and im-

plementations. PhD thesis, University of

Port Elizabeth, 1988.

[Wen90] E. P. Wentworth. Pitfalls of conservative

garbage collection. Software|Practice

and Experience, pages 719{727, July 1990.

[Wil90] Paul Wilson. Some issues and strategies

and heap management and memory hier-

archies, August 1990. Workshop on GC in

OOPLs at OOPSLA/ECOOP '90.

[Yon90] Akinori Yonezawa. An Object Oriented

Concurrent System. The MIT Press, 1990.

[YY91] Masahiro Yasugi and Akinori Yonezawa.

Towards user (application) language-level

garbage collection in object-oriented con-

current languages, 1991. OOPSLA Work-

shop on Garbage Collection in OO Sys-

tems.

10

